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Abstract— Research in autonomous driving has benefited
from a number of visual datasets collected from mobile plat-
forms, leading to improved visual perception, greater scene
understanding, and ultimately higher intelligence. However,
this set of existing data collectively represents only highly
structured, urban environments. Operation in unstructured
environments, e.g., humanitarian assistance and disaster relief
or off-road navigation, bears little resemblance to these existing
data. To address this gap, we introduce the Robot Unstruc-
tured Ground Driving (RUGD) dataset with video sequences
captured from a small, unmanned mobile robot traversing in
unstructured environments. Most notably, this data differs from
existing autonomous driving benchmark data in that it contains
significantly more terrain types, irregular class boundaries,
minimal structured markings, and presents challenging visual
properties often experienced in off road navigation, e.g., blurred
frames. Over 7, 000 frames of pixel-wise annotation are in-
cluded with this dataset, and we perform an initial benchmark
using state-of-the-art semantic segmentation architectures to
demonstrate the unique challenges this data introduces as it
relates to navigation tasks.

I. INTRODUCTION

The curation of large labeled visual benchmark
datasets [30], [52], [5], [19], [53] has helped advance
state-of-the-art in recognition [8], [37], detection [28] and
semantic segmentation [51], [47]. The success of these
techniques has made visual perception onboard autonomous
vehicles a primary source of information when making
navigation decisions. So much so, that numerous benchmark
datasets tailored specifically to autonomous navigation have
emerged [2], [4], [6], [9], [20], [50]. This data features
real-world scenarios where vehicles must interact with
pedestrians, bicycles, and other vehicles while negotiating
the roadways in urban cities. These datasets are one of many
essential tools to help evaluate progress towards releasing a
safe and reliable product.

While substantial developments have been made in au-
tonomous driving technologies, current state-of-the-art is
limited to driving on well paved and clearly outlined
roadways. However, environments encountered in applica-
tions such as Humanitarian Assistance and Disaster Relief
(HADR) [21], [22], agricultural robotics [32], [16], envi-
ronmental surveying in hazardous areas, and humanitarian
demining [14], lack the structure and well identifiable fea-
tures commonly representative of urban cities. Operation
in these unstructured, off-road driving scenarios requires a
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Fig. 1. Irregular boundaries are common in unstructured environments
as seen in this example image and annotation. This challenging property
exists throughout all sequences in the RUGD dataset and arises because
of the natural growth and pourous-like texture of vegetation and occlusion.
The color legend from Figure 2 is used for this annotation.

visual perception system to semantically segment scenes with
highly irregular class boundaries, as seen in Figure 1, to
precisely localize and recognize terrain, vegetation, manmade
structures, debris and other hazards to assess traversability
and safety.

Although there have been some efforts in vision-based
autonomous navigation in unstructured environments, the
scope of these works is quite narrow. For example, many
works define “unstructured” environments simply as a road-
way without markings [39], [13], [24]. Defense Advanced
Research Projects Agency (DARPA) funded projects like
BigDog [46] and the LAGR program [10] operated in highly
unstructured environments, but the navigation task focused
only on binary classification of terrain, i.e., traversable vs.
non-traversable. For more complex learning tasks, finer-
grained semantic understanding of the environment is nec-
essary such as learning traversal costs for multiple semantic
concepts using inverse reinforcement learning [36], [43].

Because existing benchmark datasets for self-driving ve-
hicles are collected from urban cities, they seldom contain
elements that may be present in unstructured environments.
As such, there is a need for an entirely new dataset relevant
to these driving conditions, where structured cues cannot
be readily relied on by the autonomous system. This paper
presents the Robot Unstructured Ground Driving (RUGD)
dataset, which is composed of a set of video sequences
collected from a small unmanned ground robot performing
an exploration task in a variety of natural, unstructured envi-
ronments and semi-urban areas. In addition to the raw frame
sequences, RUGD contains dense pixel-wise annotations (ex-
amples seen in Figure 2) for every fifth frame in a sequence,
providing a total of 7, 453 labeled images for learning and
evaluation in this new driving scenario. The RUGD data is



publicly available for download at rugd.vision.
The unique characteristics, and thus, major contributions,

of the RUGD dataset can be summarized as follows: 1) The
majority of scenes contain no discernible geometric edges
or vanishing points, and semantic boundaries are highly
irregular. 2) Robot exploration traversal creates irregular
routes that do not adhere to a single terrain type; eight dis-
tinct terrains are traversed. 3) Unique frame viewpoints are
encountered due to sloped terrains and vegetation occlusion.
4) Off-road traversal of rough terrain results in challenging
frame focus. These characteristics provide realistic off-road
driving scenarios that present a variety of new challenges to
the research community in addition to existing ones, e.g.,
illumination changes and harsh shadows.

Additionally, we provide an initial semantic segmentation
benchmark using several current state-of-the-art semantic
segmentation architectures [51], [47] originally developed for
indoor and urban scene segmentation. Our evaluation results
indicate that RUGD presents many challenges for current
technologies, highlighting the need for additional research
and computer vision algorithms capable of understanding
scenes in unstructured environments for autonomous navi-
gation.

II. RELATED WORK

There are a number of visual benchmark datasets available
to the autonomous driving community. We discuss the major
differences between what is currently available and the novel
conditions that RUGD provides. We also further outline
relevant real-world applications and tasks that could be
advanced with the use of the RUGD dataset.

A. Existing Datasets

Advances in semantic scene parsing have become partic-
ularly important for autonomous driving applications, where
visual perception of the scene is required to make correct and
safe navigation decisions. This has ultimately led to video
benchmark datasets including KITTI [6], CityScapes [4],
DeepDrive [50], ApolloScape [9], Oxford RobotCar [20]
and CamVid [2] that represent urban environments that
a self-driving vehicle may be expected to operate within.
These datasets are collected from camera sensors mounted
on a moving vehicle as it travels through city scenes. The
Mapillary Vistas dataset [23] also captures visual data from
street scenes, but differentiates itself in that data is captured
from different devices, e.g., mobile phones and tablets. This
provides greater viewing perspectives compared to previous
datasets. However, all of these datasets focus specifically on
environments that exhibit highly structured scenes, and the
emphasis placed on annotating structured cues such as road
signs and lane markings make these datasets extremely useful
for city-like autonomous driving technologies.

Less structured than the previously mentioned datasets
is the IDD [39] dataset of street scenes. The visual data
is collected mostly in India, where street scenes have a
higher volume of pedestrian traffic, include a more diverse
set of vehicle types, and roads are much less structured.

Nevertheless, this data is still designed for autonomous
navigation tasks focused on driving on roads, while avoiding
other vehicles and a large population of pedestrians.

There is a clear gap in the existing datasets for applications
that require visual perception in unstructured, off-road envi-
ronments. The challenges of debris, e.g., logs or rocks, water
hazards, and lack of structural cues are virtually non-existant
in these datasets, making them less reliable for applications
that often exhibit these off-road navigation scenarios. RUGD
provides these challenging scenario characteristics, and with
the densely annotated ground truth can help push the state
of autonomous driving to more complex, unstructured envi-
ronments.

B. Relevant Applications

There is a large research interest in determining terrain
traversability from camera sensors onboard robots [29], [25],
[34], [12], [38], [46], [26]. Most of these works focus
on establishing a binary classification of the environment,
traversable vs non-traversable. The large set of ground truth
annotation associated with RUGD would provide greater
higher level semantic understanding of the environment,
which would allow different platforms to make more sophis-
ticated traversal decisions given their capabilities.

The continuous video sequences of the ground vehicle
motion in RUGD also serves well as training data for
developing autonomous vehicle control algorithms. Since
RUGD video footage was captured while the vehicle was
remotely controlled by a human operator, it can serve as
training data in the context of imitation learning or inverse
reinforcement learning. The temporal consistency of frames
in the video sequences also makes RUGD highly relevant
to both supervised [15], [11] and unsupervised [48], [42]
semantic video segmentation.

We focus solely on providing an initial benchmark for
supervised semantic segmentation on RUGD, but there are
a number of other relevant learning approaches and tasks
that could benefit from our dataset. The unique qualities of
the RUGD dataset obviously leads to a data sparsity issue,
in that the unstructured nature of the environments may
not represent a large number of consistent or reoccurring
patterns. This is particularly relevant and challenging if
segmentation algorithms rely on deep learning techniques. A
discussion specific to the class sparsity that exists in RUGD
is provided later in Section IV.

The small sample set problem that exists in RUGD will
further promote in-depth research investigation into alle-
viating the data sparsity issue. Techniques such as data
augmentation by synthetic images using simulations [27],
[31], [41], [45] or Generative Adversarial Networks (GANs)
for the domain transfer between synthetic and real im-
ages [7], [35] could be enhanced and evaluated using RUGD.
One/few-shot learning could also be used to address the
data scarcity issue, using approaches based on features that
are invariant between previously seen categories and novel
classes [1], [40], or considering structural composition of
objects and their similarities between previously seen versus



Fig. 2. Example ground truth annotations provided in the RUGD dataset. Frames from the video sequences are densely annotated with pixel-wise labels
from 24 different visual classes.

Fig. 3. Robot used to collect the RUGD dataset.

novel categories [17], [44]. Results from these approaches
have shown some promising results for dealing with small
training set problems.

III. DATA COLLECTION

A. Sensors and Robot

The robot used to collect the RUGD dataset is based
on a Clearpath ‘Husky’ platform, seen in Figure 3. The
robot chassis is equipped with a sensor payload consisting
of a Velodyne HDL-32 LiDAR, a Garmin GPS receiver, a
Microstrain GX3-25 IMU, and a Prosilica GT2750C camera.
The camera is capable of 6.1 megapixels at 19.8 frames per
second, but most sequences are collected at half resolution
and approximately 15 frames per second. This reduction in
resolution and frame rate provides a compromise between
file size and quality. The images are collected through an
8mm lens with a wide depth of field for outdoor lighting
conditions, with exposure and gain settings for minimized
motion blur. The robot typically operated at its top speed of
1.0 m/s.

This platform provides a unique camera viewpoint com-
pared to existing data. The Husky is significantly smaller
than vehicles commonly used in urban environments, with
external dimensions of 990 x 670 x 390 mm. The camera

sensor is mounted on the front of the platform just above
the external height of the robot, resulting in an environment
viewpoint from less than 25 centimeters off the ground.

B. RUGD Video Overview

RUGD is a collection of robot exploration video sequences
captured as a human teleoperates the robot in the environ-
ment. The exploration task is defined such that the human
operator maneuvers the robot to mimic autonomous behavior
aimed at trying to visually observe different regions of the
environment. Given this definition, the sequences depict the
robot traversing not only on what may be commonly defined
as a road, but also through vegetation, over small obstacles,
and other terrain present in the area. The average duration
of a video sequence is just over 3 minutes.

Exploration traversals are performed in areas that represent
four general environment categories:

• creek - areas near a body of water with some vegetation
• park - woodsy areas with buildings and paved roads
• trail - areas representing non-paved, gravel terrain in

woods
• village - areas with buildings and limited paved roads

Example images from these environment categories can be
seen in Figure 4. Videos of each traversal are captured from
the robot’s onboard camera sensor at a frame rate of 15Hz
except for village, which is captured at only 1Hz, with frame
resolution 1376x1110. In addition to showing the numerous
terrain types captured in this dataset, notice that Figure 4
also highlights many of the challenging visual properties in
this dataset. This includes harsh shadows, blurred frames, il-
lumination changes, washed out regions, orientation changes
caused by sloped planes, and occluded perspectives caused
by traversal through regions of tall vegetation. Inclusion of
such scenes ensures that the dataset closely reflects realistic
conditions observed in these environments.

Currently, the RUGD dataset is skewed to represent the
trail environment. This skew is representative of data col-
lection challenges that are often faced in real-world robot



Fig. 4. Example frames from robot exploration traversal videos from each of the four environment categories.

exploration applications. That is, it is difficult to capture
and annotate data a priori from all possible environments a
mobile robot may be deployed. Thus, available environments
must be used to collect as diverse a dataset as possible
to prepare for whatever the robot may encounter during
operation. As discussed later in Section V, we withhold the
creek environment video for testing only to represent the
scenario when a novel environment is encountered.

IV. ANNOTATION ONTOLOGY AND STATISTICS

For an autonomous robot to traverse in an unknown
unstructured environment, it needs to detect, recognize, and
avoid obstacles while also steering itself toward desirable
terrains without getting damaged or bogged down. It also
needs to remain stable and has to avoid potential collisions
with dynamic entities such as humans, animals or other
vehicles. With these objectives in mind, the ontology for
the RUGD dataset focuses on terrain and objects that will
dictate autonomous agent maneuver. Terrain and ground
cover observed in the RUGD dataset are divided into ten
categories including dirt, sand, grass, water, asphalt, gravel,
mulch, rock bed, bush, and concrete. Factors such as transit
impedance, vehicle stability, and water hazards should all
be considered as various autonomous platforms may have
different sensitivity to these ground conditions. Tracked
vehicles may traverse through most of the categories, while
wheeled vehicles may have difficulties in sand or wet soil.
Although the image segmentations may be useful for binary
decisions of trafficability, more nuanced valuation of terrain
may be required in the context of disaster relief or military
operation. Given several choices of terrain ahead, the vehicle
may take into account speed, energy, exposure to enemy fire,
slippage, incline, roughness, etc. in assigning overall values
in its trajectory planning. Due to these different concerns,
we need to differentiate as much of the elements in the field
of view to allow development of appropriate autonomy.

The set of objects used in the ontology are both com-
mon object categories found in other benchmark datasets
considered to be relevant to autonomous navigation decision
making, e.g., fence, pole, sign, and tree, and also objects
such as vehicles, bicycles, tables, and buildings that may

Fig. 5. Overall percentage breakdown of class annotations in the 18 video
sequences from the RUGD dataset.

enable the robot to predict human or animal activities nearby
to avoid collisions. Although other object categories are
sparsely seen in this dataset, label annotation is restricted
to the label set outlined in Figure 2.

As this is the first dataset of unstructured, off-road driving
scenarios, we seek to collect an initial set of high quality
ground truth annotations for the community. Pixel-wise la-
bels are collected with the training data annotation platform
provided by Figure Eight, an Appen company1. Annotators
are asked to label regions in a frame from a video sequence
according to the defined ontology. To minimize the effect of
inconsistencies between annotators, a verification stage was
employed, where labeled frames from a surrounding time
window in the video could be viewed to determine if similar
regions in the environment were labeled consistently.

RUGD includes a dense set of ground truth labels for every
fifth frame of a video sequence, yielding a total of 7, 456
annotated frames. Thus, the full large scale dataset includes
over 37, 000 images, where ∼ 20% of those images include
ground truth annotations. Example ground truth annotations
can be seen in Figure 2.

Further, Figure 5 provides the overall class annotation
statistics for the entire RUGD dataset. It is clear from the
distribution breakdown that many of the classes are sparsely

1https://www.figure-eight.com/



C P1 P2 P8 T T3 T4 T5 T6 T7 T9 T10 T11 T12 T13 T14 T15 V Total %
train x x x x x x x x x x x x 4759 63.83
val x x 733 9.83
test x x x x 1964 26.34

TABLE I
Training, validation and testing splits. VIDEO SEQUENCES (C: CREEK, P: PARK, T: TRAIL, V: VILLAGE) THAT FALL INTO EACH SPLIT ARE DENOTED

WITH AN X. THE TOTAL NUMBER OF FRAMES AND PERCENTAGE OF EACH SPLIT WITHIN THE WHOLE DATASET ARE SEEN IN THE LAST TWO COLUMNS.

represented in the ground truth annotation (as noted by the
need for an inset to better visualize some of the classes).
This is in part due to the complete absence of labels in
many videos for labels such as rock bed, bicycle, bridge and
picnic table. In other cases, visual concepts may simply be
sparsely represented in all videos. These skewed annotation
statistics further support the discussion in II-B regarding
RUGD providing interesting scenarios for research focused
on learning with sparse data.

V. BENCHMARKS

Baseline Approaches. We have selected a number
of state-of-the-art semantic segmentation approaches and
trained/evaluated them on the RUGD dataset. For each
semantic segmentation approach we use a fixed encoder,
ResNet50 [8], with and without the dilated convolution of
size 8. Thus, the baseline approaches differ in their decoder
portion of the network. We have selected Pyramid Scene
Parsing Network (PSPNet) [51] (Winner of ImageNet Scene
Parsing Challenge 2016) and Unified Perceptual Parsing
Network (UPerNet) [47] as the main baseline approaches
which demonstrate some of the best performance on other
large-scale semantic segmentation benchmark datasets such
as ADE20K [53] or CityScapes [4]. On top of different
variations of PSPNet and UPerNet, we have also included an
additional approach (denoted as m1 in Tables II, III) where
the decoder does not use either the pyramid pooling module
(used in m2, m3) but contains other beneficial components
such as bilinear upsampling and deep supervision. ‘Deep su-
pervision’ is a technique proposed by [51] where an auxiliary
loss is imposed in addition to the original softmax loss which
is to train the final classifier. This technique decomposes
the network optimization into two easier problems to solve,
eventually improving the performance.
PSPNet. Zhao et al.[51] mainly focused on incorporating ef-
fective global priors on top of the local cues, and introduced
the “pyramid pooling module (PPM)”, noting that Fully
Convolutional Network (FCN) [33] based approaches do not
contain suitable techniques for utilizing global clues. PPM
pools features in several different pyramid scales, upsamples
them using bilinear interpolation to match the original feature
map. These maps are then concatenated to be fed into a
convolutional layer which makes the final prediction map. In
our experiments, we follow [51] and make use of 4 different
scales for PPM. We use down-sampling rate of 8. We set 8
as the dilated convolution scale.
UPerNet. This approach is based on the Feature Pyramid
Network (FPN) [18] which is devised to efficiently learn

and make use of semantically strong, multi-scale features.
This top-down architecture with lateral connections creates
high-level feature maps across all scales. In UperNet, FPN
and PPM function together as PPM is applied on the last
layer of the backbone network (in our case ResNet50), before
the feature is fed into the top-down hierarchy in FPN. Note
that the dilated convolution [49] which has become the de
facto model for semantic segmentation is omitted in UperNet
as it presents several drawbacks including computational
complexity. For PPM in our UPerNet, we use down-sampling
rate of 4.
Experimental Setup. Videos from the RUGD dataset are
partitioned into train/val/test splits for our benchmark ex-
perimental evaluation. Table I lists which videos belong to
each data split, with ∼64% of the total annotated frames
used for training, ∼10% for validation, and the remaining
∼26% for testing. While the selection of videos for each
split was decided to roughly produce specific sizes of each
split, two videos were specifically placed in the test split
to test realistic challenges faced in many motivating appli-
cations. First, the creek sequence is the only example with
significant rock bed terrain. Reserving this as a testing video
demonstrates how existing architectures are able to learn
from sparse label instances. This is a highly realistic scenario
in unstructured environment applications as it is difficult to
collect large amounts of training data for all possible terrain
a priori. Second, the train-7 sequence represents significantly
more off-road jitter than others, producing many frames that
appear to be quite blurry. This property is also present in
training sequences, but again we reserve the difficult video
to determine how well the techniques are able to perform
under these harsh conditions.

Training for all baseline models was performed using a PC
with 4 NVIDIA Pascal Titan Xp GPUs, on the train set. The
val set is used to evaluate the model performance as training
progresses. Image resolution has been downsampled by half
to 688x555. Batch size is fixed as 8 (2 per GPU) and we
use the “poly” learning rate policy following [51], [3]. Base
learning rate and power is set to 0.01 and 0.9, respectively.
The iteration number has been set to 80K. Momentum and
weight decay are set as 0.9 and 0.001, respectively.

Performance of the models are measured using recog-
nized standard semantic segmentation metrics [33]: mean
Intersection-over-Union (Mean IoU) and pixel-wise classi-
fication accuracy. The IoU for each class is computed as
TP/(TP+FP+FN), where TP, FP, FN each represent true
positive, false positive, and false negative, respectively. Mean
IoU is obtained by averaging the IoUs over all 24 semantic



Architecture Mean Pixel Mean Pix.
Method Encoder Decoder IoU [%] Acc. [%] Acc. [%]

m1 ResNet50+Dilated conv(8) 1conv, bilinear upsample,deep supervision 35.66 89.93 52.36
m2 ResNet50+Dilated conv(8) PSPNet [51] 36.27 90.05 53.27
m3 ResNet50+Dilated conv(8) PSPNet [51] + deep supervision 36.67 90.15 54.64
m4 ResNet50 UperNet [47] 35.87 90.36 52.06

TABLE II
Performance Evaluation on Validation Set. OVERALL SCORE IS THE AVERAGE OF MEAN IOU AND PIXEL ACCURACY.

Architecture Mean Pixel Mean Pix.
Method Encoder Decoder IoU [%] Acc. [%] Acc. [%]

m1 ResNet50+Dilated conv(8) 1conv, bilinear upsample,deep supervision 32.24 75.36 52.62
m2 ResNet50+Dilated conv(8) PSPNet [51] 32.07 75.74 52.14
m3 ResNet50+Dilated conv(8) PSPNet [51] + deep supervision 31.78 75.03 52.96
m4 ResNet50 UperNet [47] 31.95 75.85 50.72

TABLE III
Performance Evaluation on Test Set. OVERALL SCORE IS THE AVERAGE OF MEAN IOU AND PIXEL ACCURACY.

categories. Pixel-wise classification accuracy (denoted as
pixel accuracy in the Tables) is the percentage of correctly
classified pixels across all categories. We also present mean
per class pixel accuracy (denoted as mean pixel accuracy in
the Tables), which is the average pixel accuracy for each
semantic category. Because the class distribution (Figure 5)
in the RUGD data is unbalanced, the mean pixel accuracy
provides an evaluation criteria that evenly weights each class.
Experimental Evaluation.

Semantic segmentation performances on the val and test
sets for all methods are reported in Table II and Table III,
respectively. On the whole, the baseline benchmark provides
a great deal of opportunity for improvements on the RUGD
dataset. Although the pixel accuracy on the validation split
appears to be quite high, we see a significant performance
degrade on the mean per-class accuracy. This suggests that
the baseline techniques do a reasonable job learning visual
classes that are highly represented in the dataset. This is
further supported by the per class pixel accuracy results that
are shown in Table IV, where tree and grass (the two most
common classes in RUGD) are among the classes that are
learned by each of the techniques. Again, the sparsity of
some classes in the RUGD dataset is a difficult challenge,
yet the identification of these classes can be of significant
importance for autonomous driving applications.

Notice that the pixel accuracy achieved on the test set in
Table III is also significantly lower than that observed on
the validation split. As mentioned previously, we thought
this would be the case because of the deliberate inclusion of
some challenging video sequences in the test set, i.e., blurry
frames from trail-7 and rare terrain from creek. However,
each method correctly classifies most of the rock bed pixels
in the test set, as seen in Table IV. Thus, it is likely that
visual properties associated with off-road navigation are a
major challenge faced by these existing architectures.

Although the pixel accuracy of the rock bed class in the
test set was very high, this class also had some of the
lowest IoU scores produced by each of the methods. The

detailed breakdown of IoU per class for the testing split is
shown in Table V. IoU is particularly a critical performance
metric in applications toward autonomous driving since it
may translate to a steering error. For a simple case of a blob
of terrain being segmented as a traversable region, the Mean
IoU values listed in Table 4 means a large directional error.

Finally, Figure 6 shows example segmentation output for
each of the baseline models. Qualitatively, these results
highlight some of the more challenging areas of the RUGD
dataset. Specifically, the models have a difficult time iden-
tifying the exact boundaries between terrains, where classes
like grass, tree, bush and mulch do not exhibit structured
edges.

VI. CONCLUSION AND FUTURE WORK

RUGD is a unique dataset presenting realistic imagery
captured from a vehicle driven in off-road terrains. Compared
to other benchmark data for autonomous driving, RUGD
images and video clips contain significantly greater variety
of terrain types. Unlike other image datasets, most of the
scenes contain no discernible geometrical structures, and
semantic boundaries are highly convoluted. Capturing images
from a moving vehicle in natural off-road environments
resulted in images of unfavorable lighting conditions and
focus. Overall, it presents a variety of new challenges to the
community and may prompt innovative algorithmic solutions
for better understanding of scenes in unstructured or natural
environments. With pixel level semantic segmentation and
accompanying video clips, the dataset would attract interest
particularly from those in autonomous off-road driving and
natural scene recognition and understanding. Our future
plan includes additional collection of imagery data in a
variety of natural environments and disaster areas. Since
RUGD currently contains only a small sample of off-road
environments, we will also investigate effectiveness of the
latest techniques designed for sparse dataset learning.



approaches dirt sand grass tree pole water sky vehicle container asphalt gravel building mulch rock bed log bicycle person fence bush sign rock bridge concrete picnic table
m1 4.54 62.07 78.33 82.60 62.64 95.94 89.11 61.90 2.12 17.85 35.23 84.28 52.58 97.76 71.75 - 0.0 75.30 80.64 72.79 17.64 0.0 93.01 77.47
m2 1.37 61.42 76.37 84.71 61.26 93.21 89.10 68.34 5.68 19.58 35.26 83.86 51.63 97.89 64.29 - 0.25 72.94 83.29 66.00 14.28 0.0 92.57 80.22
m3 10.07 66.29 76.21 81.32 74.22 70.24 90.21 76.34 3.67 7.17 38.79 85.62 52.71 97.53 76.15 - 0.0 72.59 79.47 72.85 19.82 0.0 93.44 79.33
m4 4.96 34.10 76.04 86.09 61.19 80.57 89.49 70.00 6.58 16.95 39.47 87.66 48.11 97.97 73.38 - 0.0 71.77 79.07 63.98 12.14 0.0 90.59 79.78

TABLE IV
Per class pixel accuracy [%] on the test split. EACH BASELINE APPROACH IS LABELED WITH m1-m4 WHERE EACH APPROACH CORRESPONDS TO

THE APPROACHES SHOWN IN TABLE II AND III. THERE ARE NO ‘BICYCLE’ PIXELS IN THE TEST SPLIT, THUS ‘-’ IS USED.

approaches dirt sand grass tree pole water sky vehicle container asphalt gravel building mulch rock bed log bicycle person fence bush sign rock bridge concrete picnic table
m1 0.48 40.17 73.31 79.76 15.57 5.30 79.16 54.47 1.10 12.47 33.94 73.44 49.71 9.77 43.13 - 0.0 52.53 20.93 7.70 12.51 0.0 84.71 55.96
m2 0.03 38.68 71.97 81.60 16.00 4.39 79.27 60.97 1.60 12.71 33.96 73.28 48.64 11.76 40.21 - 0.22 50.41 22.75 6.14 8.89 0.0 84.80 53.38
m3 0.18 43.06 71.93 78.85 15.20 2.47 79.58 64.35 0.59 5.48 37.25 73.62 49.32 8.86 41.50 - 0.0 50.58 19.05 4.60 13.29 0.0 80.11 54.72
m4 0.21 26.80 71.63 82.53 19.18 1.77 81.12 60.29 1.77 12.62 37.70 72.71 45.22 9.61 41.55 - 0.0 45.36 27.02 10.81 8.95 0.0 83.33 58.56

TABLE V
Per class IoU [%] on the test split. EACH BASELINE APPROACH IS LABELED WITH m1-m4 WHERE EACH APPROACH CORRESPONDS TO THE

APPROACHES SHOWN IN TABLE II AND III.

(a) Image (b) Ground Truth (c) m1 (d) m2 (e) m3 (f) m4

Fig. 6. Sample semantic segmentation results using baseline approaches. The annotation results follow the color code in Table 2. m1-m4 correspond
to baseline approaches in Table II and III.
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